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Abstract:

a total and antisymmetric subset D of a subset of a group X is
called a nonnegativity domain of 4, the non-negativity domain of
subsets of additive groups are investigated in [8]. In this paper we will
compare the non-negative domain with the positive cone, which is a
subset of a partially ordered group G, positive cone defined as

Gt =U(e) = {x € G:x = e} of all positive (integral) elements of G.
However, in order to make nonnegativity domains comparably with
positive cones, we shall discuss nonnegativity domains for multiplicative
groups. glavosits sza’z defined the non-negativity domains as a subset
of the group, it is not necessary for nonnegativity domain to be total in
the group itself which distinguishes it from what is called a positive cone.

This paper contains some basic material as preorder (or
guasiorder) relations, definitions and properties of partially ordered sets,
partially ordered relation, equivalent relation, lattice sets, convex sets
and directed sets.

We also investigated ordered relations determined by subsets of
groups having some spatial of properties.
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1. Some definitions on groups and ordered sets:
Definition 1.1
[11]. A partial order on a nonempty set S is a relation p on S such
that the following axioms are satisfied:
p is reflexive
xpx forall x € S.
p is anti-symmetric
if a,b € Swithapb and bpa,then a = b.
p is transitive

if a,b,c €S, with apb and bpc,then apc .
Definition 1.2.

a partially ordered set is a set S together with a partial order relation
pons.
Definition 1.3.
a preorder relation on a nonempty subset A is a relation p on A
such that the following axioms are satisfied:
The relation p is reflexive xpx for all x € S.
p is transitive. if a,b,c € S, with apb and bpc, then apc .
a preorder relation is also called quasiorder relation, cf.Birkhff [1]
a preorder relation induces an equivalence relation (~) on A.
Definition 1.4.

[9]: A semigroup is a nonempty set G together with an associative
binary operation in G. A semigroup G is said to be abelian or
commutative, if its binary operation is commutative this means ab = ba
for all abea.

Definition 1.5.
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[6]: the center of a group G is defined by:

z(G) ={z € G:zg = gz forall g € G}
Definition 1.6.

[5]: let G beagroup. G is called a tortion group. if every element of G is
of finite order. While G is torsion-free, if all elements, except for the neutral
element {e}, are of infinite order

From Sza’z |8], we have the following definitions

Definition 1.3.4.:

let X be a group. for any A, B € X, we defined

Al={x"lix€e Aland AB = {xy:x € A,y € B}
Definition 1.7.

let G be a group and A is subset of the group G, A is called symmetric if
AlcA
Definition 1.8.

let G be a group and A is a subset of the group G. A is called antisymmetric
ifANnA™tc {e}.

Definition 1.9.

let A be a subset of a group G, and B is a subset of A.B is called total in
A ifA=BuB1.

Definition 1.10.

[7] a directed group is a partially ordered group which satisfies one, and
hence all of the following statements

1. G is upper directed set, i,e. for any a, b € G, there exists an upper
bound of {a, b}, U(a,b) + ¢.

2. G is lower directed set, i,e. for any a, b € G, there exists a lower
bound of {a, b}, L(a,b) # ¢.

3. G is directed set, i,e. for any G is upper directed and lower
directed of

U(a,b) # ¢,L(a,b) # ¢.
Definition 1.11.
A lattice — ordered groups which is a lattice under its order.

2. Some properties of Nonnegativity domains:

Definition 2.1.

[7] a total and antisymmetric subset D of a subset A of a group X is called
a nonnegativity domain of 4 .

This means D is a nonnegativity domain, if D N D™! € {e} and D U
D1=A4

Definition 2.2.

A nonnegativity domain D of A is called multiplicative, if

DD < D.

Definition 2.3.

(3)
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A nonnegativity domain D of A is called normal, if Dx S xD,

forall xe A.

Example 2.4.

R,=R, U {0} and R, = (0, +o0) are additive non-negative domains of the
additive group R of all real numbers and the subset A = R — {0}, respectively.

Example 2.5.
Consider the group R — {0} with the usual multiplication.
Let D; = (0,1) and D, =(—1,0) . Then

D; is a nonnegativity domain of (0, o)
D, is a nonnegativity domain of {(—o0,0) - 1}
D; U D, is a nonnegativity domain of R — {0, —1}
D;, D, U D, are multiplicative, but D, is not

Example 2.6.
Let G = {( Z):a,b,c,d €R.ad —cb # 0}
u 0

ThenD = {( v) l<uyv< oo} is a nonnegativity domain of

A= {(g ;)/)0: x,y € (0,1) orx,y € (1, 00)}

Proof- Since D™t = {(16 2) 0<uv< 1}, then

DNAD =g Q{e}z{((l) (1))}andDUD‘1=A

Theorem 2.7. If D is a nonnegativity domain of a subset A of a group G
thene € D ifand only if e € A. Therefore if e € A, then D N D1 = {e}

Proof- Since D € A, if e € D, then e € A. Conversely, if e € A4, then

e€DuUD™L

This means e € D or e € D™1. However, e € D impliese =e~1 € D1
and

e € D~timpliesthate™ = e € (D™1)"! = D. Therefore {e} € D N D1,
By antisymmetry of D, we have D n D1 € {e}. Consequently D n D~ = {e}.

Theorem 2.8 Let D be a nonnegativity domain of a subset D of a group G

If e € D and D is multiplicative, then DD = D

Proof- If e € D, then we also have D = eD < DD. If D is in addition
multiplicative, then DD < D Therefore DD = D

Theorem 2.9 If D is a nonnegativity domain of a subset A of a group G,
then A is a symmetric subset of G.

Proof- To prove A is symmetric, let x € A™!, then x™1 € A. Since A =
DuD ' thenx ' ebDuDtiex'eDorxteD Ifx'eD,thenxe
D~1, consequently x € A. If x~* € D71, then x € D, therefore x € A. Thus
A™1 € A. Then A is a symmetric subset of G .

(4)
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Theorem 2.10. Let D be a nonnegativity domain of a subset A of a group
G ,if Disnormalin A, then Dx = xD and Ax = xAforall x € A
Proof- Since D isnormal in A, then Dx < xD, for all x € A. From
Theorem 2.11. A is symmetric, consequently, x=* € A for all x € A.
Therefore Dx™! € x™1D . By using the cancellation laws, we get
x(Dx ™ Dx € x(x~D)x. Thus xD € Dx. Therefore xD = Dx for all x € A.
Consequently x™1D = Dx~1for all x € A. Therefore, we also have D~1x =
{ylxiyeD}={(x"y)"liyeD}=(x"D) 1= (DxH 1 =xD"L.
Thus xA=x(DUuD™ ) =xDUxD'=DxuUxD'x=(DuD Hx =
Ax .
Lemma 2.12. Let A, B be subsets of the group G. We have the following
statements:
i.(AnB)t=4"1tnB1?
ii.(AuB) 1=4"1uB™!
iii.(A"H1=4
Proof.(AnB) '!={x"l:x€eAnB}={x"1:x € Aand x € B}
={xlixed}n{xl:xeB}=4"1nB?
ii.(AUuB) '={x"l:x€eAuB}={x"l:x € Aor x € B}
={xlixedju{xl:xeB}=4"1uB™?
(A D) t={xixed Y} ={x"lixted}={y:yed}=A.
Theorem 2.13. If D is a nonnegativity domain of a subset A of a group G,
B IS a symmetric subset of A and E=Dn
B, then E is a nonnegativity domain of B.
Proof We prove EUE ' =Band E NnE™! = {e}.
Letx EEUE Ythismeansx € Eorx € E~L. If x €E, since E C
B. This means
X€EB....... (1)
If x € E71, then x € B~1. Since B is symmetric, thenx € B...... (2)
From (1) and (2) we get E UE~! C B.
If xeB,thenx € Eor x ¢ E.
If xeE,thenx e EUE™ ......... (1)
If x ¢ E,sinceE=DnBand DNnD™!c{e}, thenx € D71
Consequently x~* € D. Since x € B, then x '€ B~ . Since B is
symmetric, then x~* € B. Therefore x™* € D n B i.e x~! € E. Consequently
x € E~1. Hence from (1) and (2) we get B €S E U E™1,
Therefore B=EUE L. ENE'cDnD™!c{e}
Example 2.14. By theorem 3.1.9, we have Zgy = Z N Rgand Qg = Q@ N
Rg are additive non-negativity domains of the additive groups Z and Q of all
integer and rational numbers, respectively.

(5)
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Theorem 2.15. If D is a non-negativity domain of a subset A of a group X,
then E = D~! is also a non-negativity domain of A. Moreover, if D is a
multiplicative (normal in A), then E is also multiplicative (normal in A).

Proof. Since D is a non-negativity domain, thenD N D! € {e}and D U
D1=A

SinceE=D"!,thenE~'=D. ThismeansE"'NnECe,E"1UE = A.
Thus, E is a non-negativity domain of A

To prove E is a multiplicative, let x € D™1D™1, then x = d{*d;?! for
some d,,d, € D. Thus x™! =d,d, € DD € D, then x~! € D, consequently
x €D 1. SoD"1D~1 € D71 This means E e € D is a multiplicative.

To prove E isa normal in A, we have xD < Dx, for all x € A.

Show yD~t € D71y for all y € A. Let x € yD~1, we have x = yd 1, for
some d € D. Now multiply by D we get y = xd, then y € xD, since D is a
normal, then y € Dx. This means there exists d* € D such that y = d*x,
consequently

x = (d*) ~1y. Thismeans x € D~1y. Thus yD~! € D~ 1y.

Theorem 2.16. If D and E are non-negativity domains, of a subset A of a
group X, with e € A, suchthat D c E,thenD = E

Proof. If x € E, since E c A =D uUD™'. We have either x € D or x €
D1,

If x € D™, then x~ € D since D c E, then x~! € E, Consequently x €
E—l

Therefore x e ENE~! € {e}. Thus x = e, thenx € D.

Therefore E < D is also true. Consequently E = D .

Theorem 2.17. If A and B are symmetric subsets of the group X and Y,
respectively E is a non-negativity domain of B and f is an odd function of A into
Bsuchthate ¢ f(A/{e}), then D = f~1(E) is a non-negativity domain of A

Proof Let x € f1(E~1) then f(x) € E~1. This means (f(x)) ! € E.
Since f is odd, then f(x~1) € E. Consequently x~! € f~1(E), this means x €
(f~Y(E))~ L Conversely, if x € (f"1(E))™1, then x~1 € f~1(E). This means
f(x™1) € E. Consequently (f(x)) "' €E ,ief(x) e EL.Thusx € f1(E™1)

Since e & f(A\{e}), we can see that x € f~1({e}), implies f(x) =
e, then

Theorem 2.18.
if Aand B are symmetric subsets of the groups X and Y,
respectively E is a nonnegativity domain of B and f is an odd function of A

into B such that e & f(A{e}),then D
= f~Y(E) is a nonnegativity domain of A
Proof. Let x € f~Y(E™1Y) then f(x) € E~1.This means (f(x))_1
€ E .Since f

(6)
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isodd, f(x™1) € E .Consequently x* € f~1(E), this means x
€ (fTHEN
Conversely ,if x € (f"Y(E))™!,thenx~! € f~Y(E).This means f(x™1)
EE.
Consequently (f(x)) 1 €E,i.ef(x) e E"L.Thusx € f~1(E™1)
Since e & f(A\{e}) ,we can see that x € f~1({e}),implies f(x) = e, then
x & A{e},this means x =
e.Therefore,(f Y(E)) %, and f~1({e}) € {e}.

Since E is a non — negativity domain of B .We have
A=f1B)= fHEVE D =fYE)VfYE™)
=fHEYVFTIENT

=DuU D!,
Now D n D™ = fXE)n (f(E) " = fHE)nfHET) =
fFHENE™) =f"1(e)
C {e}. Therefore, D is non — negativity domain of A.
We can also state:
Corollary
If A and B are symmetric subsets of the groups X and Y,
respectively,D is a non
— negativity domain of A and f is an odd injective
function of A onto B such that f(e) =e,if e € A,thenE = f(D) isa
non — negativity domain of B .
Proof .Since D is anon
— negativity domain of A and f is odd. We have

B=fA)=fDUuD™)=fD)UFOFD)U(f(D) =EUVE™
Now, ENE1=fD)n(f(D)) " =fD)n(f(D-Y)) < fDn
D Hcfle)=e
Theorem 2.20. if Disanon—
negativity domain of a subset A of a group X
and f is an injective multiplicative function of X into a group Y ,then
E = f(D)is a non — negativity domain of B = f(A). Moreever,if D is a
multiplicative (normal in A), then Eis a multiplicative (normal in B)
Proof.Since f is a multiplicative, this means
fle)f(e) =f(e), thenf(e) =e
We also have f(x)f(x™1) = f(e) = e. This means f(x™1) = (f(x))_1
For all x
From theorem 3.1.6 A is symmetric, and since
Bl=()t=fAYH=fA) =B . Then B is symmetric by
Corollary 3.1.12 we get, E is a non-negativity domain of B.
To prove the remaining assertions, then

(7)

2.19



(Aol g Al o glall Acedl) Al ———— e gualidl sutal

2024 peuss

EE = f(D)f(D) = f(DD) c f(D) =E . Consequently, E is also
multiplicative. If D is normal in A, then

E=f()=fD)f(x)=fDx) cf&xD)=fx)f(D) = f(x)E.Forall
x € A.

Since B = f(A), we also have Ey = yE for all y € B. Therefore E is
normal.

3.the positive cone.

After we studied the nonnegativity domain on multiplication groups to
make it more comparably with positive cones, in this section we will talk about
some properties of orderability on sets and groups which is related with the
concept of positive cone.

Definition 3.1. [7]: a partially ordered group is a set such that
1. G is a partially ordered set under a relation <.
2. G is agroup.
3. a < b implies ac < bcand ca < cb foralla,b,c € G.
Remark. statement 3 is called the monotony law.
Theorem 3.2 let G be a partially ordered set. If G is a group, then the
following statements are equivalent:
a < b implies ac < bcandca < cb foralla,b,c €G.
a < b implies cad < cbd and ca < cb forall a,b,c,d € G.
a < b implies ca < cb and ac < bc forall a,b,c € G.
a<band c<d implyac<bd foralla,b,c,d €G.
a<band c<d implyac<bd foralla,b,c,d €QG.

If G is a partially ordered group under a partial ordered relation

<, then G together with the dual of <, then G together with the dual of <
(i.e. =) is a partially ordered group.

We may write the following alternative and equivalent definition:
Definition 3.3. a partially ordered group (p.o.group) is a set G satisfying
the following axioms:

1.There exists a partial ordered relation < on the set G.

2. G is group.

3.0ne (and, hence, all) of the statements of Theorem3.2. is satisfied.

Mutsushita [12] and Zaiciceva [14] considered the case when only the half
of the monotony law, a < b implies ca < cb forall a, b, c € G, in definition 2.1
is assumed (see also Conrad [4] and Cohn [3]).

A somewhat more general notion the partially ordered group has been
studied by Britton and shepherd [2] under the name “almost ordered group”

If condition 1 in the definition 2.1.6 is weakened, then we have.

Theorem 3.4[7] let < be a preorder relation on a group G such that

a < bimpliesca <cb and ac < bc forall a,b,c € G. If arelation,

Denoted by ~, is defined on G by

(8)
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x~y if andonly if x <yandy < x,

Then

Q) x~y if and only if xy~1~e(if and only if y~1x~e).

(i) xy~y1 and x;~y, imply x1x,~y1Y; -

(iii)  The equivalence class N = [e] = {x € G: x~e}

is anormal subgroup of G .

(iv) G/N ={[a]:a € G} = {aN:a € G}, in fact,aN = [a]

for all a € G,where [a] is the equivalent class of a.

(V) G/ N is a partially ordered group under the relation

induced by <.

Proof.

0) Let x~y this means x < y and y < x. Multiply by y~1.

Wegetxy ! <eand e<xy !.Thusxy ! ~e.

conversely xy~1 ~e,then xy"1 <eand e<xy™!.

Multiply by y,we get x < yand y < x ,i.e. x~y.

(i)  Letx;~ y; and x,~ y,. Since x;~ y;, then x; < y,;

and y; < x,. Since x,~y, thenx, < y, and y, < x,.

multiply x; < y; by x, then x; x, < y; x, . multiply
X2 £ Y2 by yi,then y;x; < y1 y2. Now x1x; < y1 X
and y1X; < Yy Yo imply x1x; < Y1 Y3
Similarly, it can be shown that x;x, = y; ¥,.

Therefore x1x; < y1y, and x1X, = V1Y, .

This means x1Xx, ~ y1 Va.

(iii)  We shall prove that N is a subgroup. Let x,y € N, then x~e and
y~e.Thenx <e,e<x,y<eande <y.

Then y™ 1 <e,e <y~ Then xy ! < x and x < xy~!. This together
with x <e,e<x, by the transitive law, imply that xy 1 <ee<
xy L. Thus xy '~eand xy™* € N forx,y €
N.Therfore N is a subgroup.

(iv)  We will show that {aN: a € G} = {[a]: a € G}. In fact, we will

Show that aN = [a] foralla € G. Let y € aN. Then

y =ax for some x € N.Since x < e and x = e, then

y=ax <ae andy = ax = ae. Then y~a and y € [a].

aN c [a].
on the hand, if y € [a],theny = aandy < a.Thena™'y > e
and a 'y <e.Thenx =a 'y € Nand y = ax.Thus y € aN.

So [a] € aN. consequently aN = [a].

(v)  Defined a relation on G/N by:

[a] < [b] if and only if a < b.

9)
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First, we will show that the relation is well-defined, i.e.
If [a] <[b]and a’ € [a], b’ € [b], we shall show that
[a'] < [b']. We have
Definition 3.5. [7]: let
G be a partialy ordered group and let xeG.then
l. x is called positive or inegral if x > e.
Il. x is called strictaly positive or strictly integral ,if x > e.
I"i. x is called negative if x < e.
Definition 3.6. [7]: let G be a partialy ordered group, the set
Gt =U(e) = {x € G:x = e} of all positive (integral) elements of G is
denoted
by p(G) or,simply, P and is called the positive cone(or the integral)of G
Lemma 3.7. let G be a partially ordered group then the following
statement are equivalent.
(i) a < b.
(ii)ba™! € P.
a~lb € P.
Where P = {x € G: x = e} is the positive cone of G.
Proof. Suppose statement 1 holds. This means a < b. Multiply by
a~! from the right,we get
aa"! < bal,i.e ba ! > e.This means ba™! € P.
Suppose statement 2 holds. This means ba™! >
e, multiply by a from the right,we get b > a.
This means a™b € P.
Suppose statement 3 holds. This means a b =
e, multiply by a from the left we getb > a
Theorem 3.8 [13]
Let G be a partially ordered group. Then the positive
cone P of G satisfies the following properties:
()PP c P.
(@) PNPt={e}.
(iii) x 1Px € P (or, equivalently xPx~! € P)for all x € G.
Proof. To prove (i). let x,y € pthenx > eandy >
e multiply the first
inequality by y,we get xy =y and y = e.The transitivity of <
implies that xy > e. Hence xy € P and PP C P.
To prove (ii).let x,y Epthenx >eande =e ! € P~1.Then
{e} cPnP 1 Also PnPlc
{e} which follows from the fact that
x€EPNP lthenxePandx € P L. Thenx€Pandx 1 €P,iiex>e
and x ! > e. Then x = e and, on multiplying x™* > e

(10)
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by x,e = x.The antisymmetry of < impliesx = e, i.e
PnPtc{e}. ThusPnP1={e}
To prove(iii) we first note that if y € xPx~1, then x 1yx € P.
This means x yx
> e muliply by x from the right and x~'from the left,
we get y < e.This means y € P.Consequently x Px C P.
Example. Let G be the additive group of complex numbers and define
x+iy<u+ivifandonlyif x <uandy < v.Then the positive cone P
={x+iy:x =0,y = 0}. One may certianly say that
I)P+PCcP.
(i) Pn P71 ={0},and
(ili) x4+ P —x < P(or,equivalently —x+ P+ x S P)Forallx €
G.In fact, (<) can be replaced by(=) in (i) and (iii).
As a corollary of the above theorem
Theorem
3.9.The positive cone of a partially ordered group G has the following
properties
(i) P is a semigroup
(ii)P is anormal in G
Corollary 3.10.
if Pisthe positive cone of a partially ordered group G then:
(i) PP = P.
(ii) xPx 1 =P forall x € G.
Proof.(i) From Theorem 2.4.4 PP C P.If x € P then x = ex
€ PP.This means P € PP.This means P < PP.
(ii) From Theorem 2.4.4 xPx™* C P.If p € P,thenp
> e. Multiply by x* and x,we get x~ 1
px > e.This means x " 'px € P,then x (x 'px)x~! € xP x 1. Therefore P
CxPx L.ThusP = xPx™ L
Theorem 3.11. let G be a group and p a nonempty subset of G and defined
a relation < on G by a < b if and only if ab™! €p. Then:
Q) < IS reflexive if and only if e Ep.
(i) < is antisymmetric if and only if p N p~1 < {e}.
(ii)< isatransitive ifand only if pp C p
(iv) the monotony law i.e. the condition
(a < b implies xay < xby for allx,y € G) holds ifand only if
xpx 1 Cp,forallx €g
Proof.
0] Suppose < s reflex then a < a for all a € G. This means aa™! €
Pe.e€ P.

(11)
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Conversely ife € P, then forany a € G, e = aa™! € P. Therefore a <
a, and thus < is reflexive.
b1 < a,this means a(b~1)"1 € P, consequently ab € P.Since a, b,
€ P are arbitrary, then PP € P.Conversely, suppose PP
CP.Ifa<bb<cthenbaleP,ch?
€ P,and so cb™'ba ' = ca™! € PP € P.This means a
< c and so the relation is transitive.

(iv) The condition (a< b implies xay < xby) holds if and only if the
condition ba™! € P implies (xby) (xay)~! € P holds, This is equivalent to
ba~! € P implies x(ba™1)x~! € P. This condition is clearly true if xPx~! C
P. Conversely id the monotony law holds, i.e the condition ba™! € P implies
x(ba™1)x~1 € P holds, then, since every element b of P is of the form ba™! €
P where a = e, we have x(ba™1)x™! = x(b)x~! € P which means xPx~! €
P.

In the above theorem, the condition ha™! € P can be replaced by
a~'b € P to obtain the following :

Theorem3.12.

Let G be a group and P a nonempty subset of G and defined
arelation <onG bya <bif and only if a 'b € P, then
(i) <isreflexiveif and only if e € P.
(ii) < isantisymmetricif and onlyif Pn P! c {e}.
(iii) < istransitive if and only if PP < P.
(iv) The monotony law(i.e The condition a < b implies xay
< xby) holds if and only if xPx~* < P.

Proof. Similar to the proof of the above theorem.

Example. Let G=R/{0} and P = [1, ), then P satisfies the following
statements:

4. The Existence of Nonnegativity Domains:

Definition 4.1. A subset of Aof a group X is called n —
cancellable for some

n €N if x™ = eimplies x =e for all x € A. Equivalently,if x
€ A—{e}

implies x™ + e.

Remark. If we defined

X,={xeX;(x)"=e}, thenXisn —
cancellable if and only if

X, = {e}. This means {e} U (X\X,,)is the largest

n — cancellable subset of X.

Example. if A=
{1,—1,i,—i}is a subset of the multiplicative group of all

(12)
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nonzero complex numbers. Since x € A — {1}implies x?¥*1 =

1,then Ais
2k + 1 — cancellable for all k. But A is not 2k — cancellable as

—1€A—{e}
and(—1)% = 1.
Example. if B=
{1,i,—i} is a subset of the multiplicative group of all
nonzero complex numbers. Since x € B — {1} implies x** = 1,

then B is not
4k — cancellable

But x***t1 = x # 1,x**2 = x2 = —1 = 1,x*+3 = x3 = —x # —1,
then B is 4k + 1,4k + 2,4k + 3 — cancellable.
Theorem 4.2. if a subset of a group x has a non —

negativity domain,
then Ais 2 — cancellable.
Proof.Since D is a non
— negativity domain of A and assume that x € A,
such that x? = e, this means x = x~ L. Since A
= D U D~ we have either
x €Dorx €D LIf x €D,since x ! = xwe also have x~
€D,i.exe D},
Similarly,if x € D71,since x™! € D™ li.e x € D. Consequently
x € DN D™ c{e}, and hence x = e.
Example.
If Ais a subset of the multiplicative group of all nonzero complex
numbers such that — 1
€ A,then A has no non — negativity domain. It is
enough to note only that (—1)* = 1, but — 1
# 1. Thus , A is not 2 cancellable

1

Theorem
4.3. If ais a symmetric and 2 —

cancellable subset of a group X |
and B is an anti — symmetric of A then there exists a non
— negativity
domain D of A suchthat B € D.

Proof.Let D be the family of all anti
— symmetric subsets D of A such that

(13)
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B c D. This means ,B € D,and thus D
# @. Moreover, since the union of a
directed family of anti — symmetric subets of X is also anti
— symmetric,
then D is, in particular, inductive. By Zorn's Lemma, there exists maximal element
DofD
since D is an anti — symmetric subset of A such that B C
D and
DUDt'cAUuA!=A. Toshow that A
c DU D™}, for this assume on the
contrary that there exists x € A such that x ¢ D and x~ !
¢ D. Define
E =D U {x}.Then we have B € E C A.
Moreover,if y € ENE L i.e,
y€DU{x}and y~! € D U {x}, then by
examining the four possible cases and using the assumptions x
¢ D and
x~1 & D,we can see that either y € D N D~ ! or y? = e can hold
By the anti — symmetry of D and the 2
— cancellability of A, it follows that
y =e.Therefore ENE™! c {e}, thus E
€ D .Hence by using the maximality
of D c E ,we can infer that E
= D ,which is a contradiction .Therefore, the
required assertion is true .
Theorem
45.1f Ais a subset of a group X then the following assertions
are Equivalent:
1. A has a non-negativity domain .
2. A is symmetric and 2-cancellable .
Proof.Suppose (1)holds by Theorem4.2 we get A is symmetric,and by
Theorem 4.3 we get Ais 2 — cancellable Conversely, since @ is an
anti
— symmetric subset of A.Suppose statement (2) hold . By putting B
=0
in Theorem 4.2 we get statement (1).
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